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Abstract 
 
The goal of many remote sensing-based land cover mapping projects is to map complex 
landscape features with high thematic resolution. Complex classification schemes often 
contain land cover descriptions that do not have clearly defined spectral, or at times, 
ecological breakpoints.  Recognizing gradations in land cover classes may more accurately 
portray reality, but it also complicates quantitative assessments of map quality based on 
classical set theory and the deterministic error matrix approach. Using fuzzy sets for accuracy 
assessment provides an effective means to address this problem by recognizing varying levels 
of set membership for multiple map classes.  In addition, fuzzy set assessments provide 
metrics for map quality assessment beyond those provided by the deterministic error matrix.  
These metrics include assessments of the frequency, distribution, magnitude, and source of 
map errors. We present an innovative approach to fuzzy set map accuracy assessment that 
uses a systematic framework based on ecological criteria.  The methodology we present 
builds on the theoretical framework first presented by Gopal and Woodcock (1994).  In this 
white paper we demonstrate how our approach can be used to assess the MAX, RIGHT, 
DIFFERENCE and MEMBERSHIP operators. A primary objective is to incorporate 
greater objectivity in the error evaluation process, thus allowing multiple map experts to 
conduct fuzzy accuracy assessments for multiple maps in a standardized fashion.  Our 
approach differs from more common approaches to fuzzy set assessment by focusing on a 
holistic evaluation of the deterministic error matrix to derive fuzzy set metrics.
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1.0 Introduction 

Assessing land cover map accuracy is a significant concern for remote sensing-based 

mapping projects.  While various approaches to map accuracy assessment are recognized 

(Foody, 2002), making an assessment helpful to the map user should be of primary 

importance (Smits et al., 1999).  The error matrix and kappa statistic have emerged as the de 

facto standard for evaluating map accuracy and presenting this information to the map user 

(Foody, 2002).  Appeal for the error matrix lies partly in its simplicity, but also in its utility 

(Congalton, 1991; Congalton and Green, 1999).  The error matrix provides information 

about errors of commission and omission for individual map classes, as well as a quantitative 

measure of overall map accuracy in a single table.   

 Other approaches aimed at delivering additional information to map users have been 

explored.  Most notable is information gained through fuzzy set analysis based on methods 

first presented by Gopal and Woodcock (1994).  Fuzzy set analysis provides additional 

information to the map user because it recognizes that land cover does not fit 

unambiguously into single membership classes.  The deterministic, or “traditional”, error 

matrix, based on classical set theory, assumes that all locations on the map can be 

unambiguously assigned to a map category. By recognizing varying levels of set membership 

into multiple map categories, it is possible to provide information not only on the frequency 

of errors, but also on the nature, magnitude and source of the errors (Gopal and Woodcock, 

1994).  

  A fundamental component of fuzzy set assessment is the construction of a 

“linguistic measurement scale” to assign degrees of correctness for classification errors.  

Gopal and Woodcock (1994) suggest five levels of linguistic values that experts can use 

when evaluating a map product relative to reference samples, these are: absolutely wrong, 

understandable but wrong, reasonable or acceptable, good, and absolutely right. Determining the 

appropriate error level for any given reference site is subject to the judgment of the error 

assessment “expert.”  This subjectivity can be problematic when more than one expert is 

involved in the fuzzy set assessment process (Woodcock and Gopal, 1992).  Determining 

“good” versus “reasonable or acceptable” is not only subject to the judgment of each expert, 

but the intended application of the map.  Establishing objective criteria for assigning the 

level of error, therefore, is a critical component of a meaningful fuzzy set assessment. 
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 To address the need for a more objective approach to evaluating map errors in a 

fuzzy set analysis, Townsend (2000) developed a quantitative evaluation method focused 

explicitly on biotic similarity among mapped vegetation classes.  Using a modified version of 

the Bray-Curtis coefficient of community (Bray and Curtis, 1957), Townsend (2000) 

evaluated similarity between reference sites and each mapped class to identify varying 

measures of agreement.    

Townsend’s (2000) technique represents an important contribution to fuzzy set 

assessment procedures and the Gopal-Woodcock methodological framework.  The primary 

limitation to the approach, however, lies in the need for extensive amounts of survey 

information required to generate the quantitative similarity index (Townsend, 2000).  Part of 

Townsend’s study examined how limited, or generalized, site data affects the reliability of the 

similarity index.  Sample sites providing sufficient information on species presence and 

abundance to reliably measure similarity among sample sites took between 1 and 4 hours to 

survey (Townsend, 2000).  For typical remote-sensing based mapping efforts this level of 

detail is cost-prohibitive given the large number of samples required for both training and 

map validation. 

This paper presents a methodology for fuzzy set assessment based on the framework 

suggested by Gopal and Woodcock (1994).  Like the work of Townsend (2000), our 

methodology focuses on incorporating greater objectivity in the error evaluation process.  

We assert that the first requirement for a meaningful fuzzy set assessment is to explicitly 

define the context within which evaluation criteria are established.  The second requirement 

is to establish specific criteria, or rules, for the error evaluation process within the defined 

context.  In this paper we define the context for error evaluation to be gradations of 

ecological similarity.  Within this context we present a systematic framework for establishing 

ecological criteria identifying set membership.  

2.0 Background 

The methods presented in this paper were developed, in part, through our effort to 

assess map quality for the Southwest Regional Gap Analysis Project (SWReGAP).  

SWReGAP was a multi-state collaborative effort involving five land cover mapping teams 

and a team of vegetation ecologists.  The five-state region covers approximately 1.4 million 

square kilometers and includes the states of Arizona, Colorado, Nevada, New Mexico and 

Utah.  The region was divided into 25 spectral-physiographic mapping zones, which 
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facilitated image classification and assisted in project tracking and management (Manis et al., 

2000).  We used a decision tree classifier with multi-season Landsat ETM+ imagery and 

digital elevation model derivatives to predict land cover (Lowry et al., in review).  The land 

cover legend was based on the Terrestrial Ecological System Classification framework 

developed by NatureServe (Comer et al., 2003).  Ecological Systems are defined as a groups 

of plant communities with similar ecological processes, substrates, and or environmental 

gradients, manifesting themselves in geographic scales of tens to thousands of hectares and 

persisting for 50 years or more (Comer et al., 2003).  For the five-state region, approximately 

93,000 ground truth samples were available for training and map validation. 

Mapping responsibilities were divided among the 5 state teams by mapping zones, 

each state team having responsibility for 3 to 6 mapping zones. Each mapping zone 

functioned as a separate working unit and was independently assessed for map quality. 

Twenty percent of available samples for each mapping zone were randomly selected in 

proportion to the number of samples in each land cover class.  Reference samples were 

intersected with the map and output formatted as a deterministic error matrix with a 

corresponding KHAT statistic (Congalton and Green 1999).  The number of land cover 

classes varied with the size and complexity of each mapping zone, ranging from 13 classes in 

the least complex mapping zone to 53 classes in the largest and most complex mapping 

zone.  

3.0 Methods and Results 

A common approach to fuzzy set error assessment requires a “map expert” to assign 

multiple land cover labels to each reference site as acceptable alternatives to the most 

acceptable, or “true” call (Congalton and Green, 1999).  The mapping analyst is unaware of 

the actual mapped class for that specific reference site, thus assuring independence between 

the alternate labels and the land cover map. Reference sites and the mapped land cover 

classes are compared, determining the level of correspondence, or “correctness”, between 

the reference data and the land cover map.  

Our method differs from the common approach in its emphasis on a holistic 

evaluation of the deterministic error matrix rather than evaluation of individual reference 

sites.  Instead of evaluating individual reference sites, the mapping analyst evaluates 

misclassification errors (i.e. off-diagonals) within the error matrix using a systematic 

framework that explicitly recognizes similarities among mapped land cover classes.  An 
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important objective of this framework is to minimize the subjectivity inherent in the map 

expert’s determination of acceptable alternatives to the most correct, or “true” label.  

3.1 Establishing a Systematic Framework 

We begin by recognizing two requirements for establishing a systematic framework 

for fuzzy set map assessment.  First, we identify the context within which we consider 

similarities among land cover classes, and second we define explicit criteria for error 

evaluation given those recognized similarities.  We suggest the context for recognized 

similarities be determined by the land cover classification scheme, or legend.  For example, 

mapping projects dealing primarily with land use may choose to identify similarities among 

land uses as the context for establishing evaluation criteria.  Because the land cover 

classification legend for SWReGAP focused on natural and semi-natural land cover classes 

utilizing NatureServes’ Ecological Systems as the primary mapping unit, we identify an 

ecological context for our evaluation criteria.    

We recognize four basic types of ecological similarity among mapped land cover 

classes (Table 1).  Recognized ecological similarity types are defined as the possibility of a specific 

ecological condition shared by two distinct land cover classes.  For example two land cover 

classes may have the same physiognomic structure (Type A), determined by how the 

Ecological System nests within the 2001 National Land Cover Data Set (NLCD) (Homer et 

al., 2003) classification legend.  Some land cover classes share dominant or diagnostic species 

(Type B) as identified by the Ecological System class descriptions provided by NatureServe. 

Other classes may be commonly juxtaposed on the landscape, or may form a mosaic where 

patch or linear land cover classes commonly occur within a matrix of another land cover 

class (Type C).  Finally some land cover classes may share similar specialized substrates 

(Type D).   

Next we recognize that any two land cover classes may share multiple combinations 

of these basic ecological similarity types. Constructing a systematic ranking of all possible 

ecological similarity types provides a framework for assigning ecological similarity categories 

(Table 2).  The idea of ecological similarity categories builds on Gopal and Woodcock’s 

concept of “scaled linguistic values” to describe levels of possible membership within the 

fuzzy set framework.  An important difference with our approach however, is that it 

explicitly defines an ecological context for determining membership using the combination 

of ecological similarity types to form criteria, or rules, for set membership (from Table 1).   
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Table 1. Names, codes and descriptions of four basic ecological similarity types.  
          

Ecological 
Similarity 

Code 

Ecological    
Similarity          

Type 
  Ecological Similarity Description 

 Reference and mapped classes share the same NLCD Class, such as: 
 N30 Barren (Includes all Barren Lands) 
 N40 Forest (Includes all Deciduous Forest, Evergreen Forest and Mixed Forest types) 
 N50 Shrubland (Includes all Shrub, Dwarf Shrub and Shrub/Scrub types) 

 N70 
Herbaceous (Includes all Grassland, Herbaceous, Savanna and Shrub-Steppe 
types) 

A Physiognomic 
Structure   

 N90 Wetlands (Includes all Wetland, Riparian, Emergent Wetlands, Wet Meadows, and 
Greasewood Flats) 

     

B 
Dominant 
Species 

Composition 
 

Reference and mapped classes share dominant/diagnostic species as specified in concept of 
Ecological Systems.  For example, if systems share dominant or codominant species, then species 
composition is similar.  If systems share species that are only present, then species composition is 
not similar.  Would also apply between systems where the dominant/codominant species is 
common, but has been identified to a different subspecies (e.g. Artemisia tridentata spp.). 

     

C Juxtaposition  

Reference and mapped classes commonly form a mosaic, such as patch or linear systems 
occurring within matrix systems, or where broad ecotonal boundaries between the classes occur 
with regularity.  This often relates to minimum mapping unit (scale) issues with mosaics of similar 
landcover types.  Refrain from using this code when the possibility of juxtaposition is only a rare 
occurrence. 

     

 Reference and mapped classes share substrates with special properties that ecologically define 
each Ecological System.  Apply with the following substrates only: 

 - Eolian (sandsheets and dunes) 

 - 
Bedrock (exposed weathering parent material); sparse vegetation (Barren) classes 
only 

 - High Salinity (exposed marine shales, saline overflow /playas) 

D Special 
Substrates 

      

 

Another important difference is that our approach is designed to evaluate pairs of 

land cover types for recognized ecological similarities.  For example, using this framework, 

an Inter-Mountain Basins Big Sagebrush Steppe land cover class is considered “moderately 

similar” to an Inter-Mountain Basins Big Sagebrush Shrubland land cover class, by virtue of 

two ecological similarity types: Type B (shared dominant or diagnostic species) and Type C 

(common juxtaposition).  This differs from more common fuzzy set assessment methods 

that focus on assigning individual reference sites to membership categories. The importance 

of this difference becomes more apparent as we describe the computation of fuzzy set error 

matrices. 

3.2 Computing Fuzzy Set Matrices 

The ecological context and explicit ecological criteria established in Tables 1 and 2 

form the foundation upon which we performed fuzzy set assessments for each of the 25 

mapping zones in SWReGAP.  Using these ecological criteria, mapping analysts constructed 
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a series of supporting matrices (described below) used in conjunction with the deterministic 

(traditional) error matrix to compute fuzzy set error matrix statistics. Thus, the same 

ecological criteria from the framework were applied across all 25 mapping zones. 

 

Table 2. Examples and explanations of ranked ecological similarity categories based on 
ecological similarity types.   
          

Ecological     
Similarity Code 

Relative 
Similarity     
Category 

Example Explanation 

Relative 
Similarity 

Score 
(RSS) 

No Similarity       
(blank) 

ABSOLUTELY 
INCORRECT 

Inter-Mountain Basins Cliff 
and Canyon (S009) 
CONFUSED WITH Great Basin 
Xeric Mixed Sagebrush 
Shrubland (S055) 

No Types of Ecological Similarity are 
shared between these two Ecological 
Systems.  

1 

A 

C 

D 

SOMEWHAT     
SIMILAR 

Rocky Mountain Aspen 
Forest and Woodland (S023) 
CONFUSED WITH Great Basin 
Pinyon-Juniper Woodland 
(S040) 

These two Ecological Systems are nested 
within the same NLCD Class for shrub/scrub 
and therefore share A- Physiognomy.  No 
other Types of Ecological Similarity are 
shared.   

2 

B 

AB 

AC 

AD 

BC 

BD 

CD 

MODERATELY 
SIMILAR 

Inter-Mountain Basins Big 
Sagebrush Shrubland (S054) 
CONFUSED WITH Inter-
Mountain Basins Montane 
Sagebrush Steppe (S055) 

These two Ecological Systems are similar 
in terms of B- shared dominant/diagnostic 
species and C- Juxtaposition.   

3 

ABC 

ABD 

ACD 

BCD 

ABCD 

VERY           
SIMILAR 

Inter-Mountain Basins Big 
Sagebrush Shrubland (S054) 
CONFUSED WITH Great Basin 
Xeric Mixed Sagebrush 
Shrubland (S055) 

These two Ecological Systems are similar 
relative to A- Physiognomic Structure, B- 
Dominant Species Composition and C- 
Juxtaposition.   

4 

The reference and mapped classes are 
identical.   5 

Diagonal Cell   ABSOLUTELY 
CORRECT 

Great Basin Pinyon-Juniper 
Woodland (S040) MAPPED AS 
Great Basin Pinyon-Juniper 
Woodland (S040)     

 

The initial supporting matrix is the ecological similarity code matrix (Table 3).  This 

matrix has the same structure as a traditional error matrix, with an equal number of columns 

and rows for the number of land cover classes mapped. The analyst evaluates each possible 

paired combination of confused land cover classes, and assigns ecological similarity code(s) 

to each cell in the matrix based on recognized ecological similarity types (see Table 1). Types 
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of ecological similarity are determined by examining the description for each Ecological 

System from the classification legend and applying the criteria specified in Tables 1 and 2.  

Multiple combinations of ecological similarity codes representing different types of 

ecological similarity are possible.  Empty cells indicate no ecological similarity between 

paired land cover classes, and self-similar land cover classes (i.e. diagonal cells) are given a 

code of ‘X’. 

Table 3. Ecological similarity code matrix derived from Tables 1 and 2. 
               

LAND COVER CLASS Map 
Code S

00
9 

S
02

3 

S
02

8 

S
04

0 

S
05

0 

S
05

4 

S
05

5 

S
06

5 

S
07

1 

S
07

8 

S
09

0 

S
09

6 

S
11

8 

Inter-Mountain Basins Cliff and 
Canyon S009 

X   C C C       C   C     

Rocky Mountain Aspen Forest and 
Woodland S023 

  X AC A         C       C 

Rocky Mountain Subalpine Dry-Mesic 
Spruce-Fir Forest and Woodland S028 

C AC X AC         C         

Great Basin Pinyon-Juniper Woodland 
S040 

C A AC X C C C   C C C   C 

Inter-Mountain Basins Mountain 
Mahogany Woodland and Shrubland S050 

C     C X AC A A C C       

Inter-Mountain Basins Big Sagebrush 
Shrubland S054 

      C AC X ABC AC BC BC C C C 

Great Basin Xeric Mixed Sagebrush 
Shrubland S055 

      C A ABC X AC C BC C C   

Inter-Mountain Basins Mixed Salt 
Desert Scrub S065 

        A AC AC X   C C BCD   

Inter-Mountain Basins Montane 
Sagebrush Steppe S071 

C C C C C BC C   X ABC A   C 

Inter-Mountain Basins Big Sagebrush 
Steppe S078 

      C C BC BC C ABC X AC C C 

Inter-Mountain Basins Semi-Desert 
Grassland S090 

C     C   C C C A AC X C   

Inter-Mountain Basins Greasewood 
Flat S096 

          C C BCD   C C X AC 

Great Basin Foothill and Lower 
Montane Riparian Woodland and 

Shrubland S118 
  C C C   C     C C   AC X 

 

The analyst creates the second supporting matrix by translating the nominal  

ecological similarity codes in Table 3 to ordinal relative similarity scores (Table 4).  Relative 

similarity scores (RSS) are numeric values ranging from 1 to 5 and correspond to the 

linguistic ecological similarity categories in Table 2.  The relative similarity score matrix is a 

fundamental component of our methodology, and will be referenced throughout the 

remainder of this paper.  

The deterministic (traditional) error matrix is a cross-tabulation of agreement 

between reference sites (columns) and mapped land cover classes (rows), based on classical 
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set theory (Congalton and Green, 1999). The matrix shows the number of reference sites 

that match the mapped land cover in the diagonal cells, and the number of reference sites 

that do not match the mapped land cover in the off-diagonal cells.  The ratio of matched 

sites to total sites is represented as a percentage indicating individual and overall class 

accuracies.  Producer accuracies are the ratio of matched sites to total number of reference 

sites for a given land cover class (columns) and provide a measure of omission error. User 

accuracies are the ratio of matched sites to total number of sites mapped in a given land 

cover class (rows) and provide a measure of commission error (Table 5).  

Table 4. Relative Similarity Score (RSS) matrix. 
               

LAND COVER CLASS Code 

S
00

9 

S
02

3 

S
02

8 

S
04

0 

S
05

0 

S
05

4 

S
05

5 

S
06

5 

S
07

1 

S
07

8 

S
09

0 

S
09

6 

S
11

8 

Inter-Mountain Basins Cliff and 
Canyon S009 

5 1 2 2 2 1 1 1 2 1 2 1 1 

Rocky Mountain Aspen Forest and 
Woodland S023 

1 5 3 2 1 1 1 1 2 1 1 1 2 

Rocky Mountain Subalpine Dry-Mesic 
Spruce-Fir Forest and Woodland S028 

2 3 5 3 1 1 1 1 2 1 1 1 1 

Great Basin Pinyon-Juniper Woodland 
S040 

2 2 3 5 2 2 2 1 2 2 2 1 2 

Inter-Mountain Basins Mountain 
Mahogany Woodland and Shrubland S050 

2 1 1 2 5 3 2 2 2 2 1 1 1 

Inter-Mountain Basins Big Sagebrush 
Shrubland S054 

1 1 1 2 3 5 4 3 3 3 2 2 2 

Great Basin Xeric Mixed Sagebrush 
Shrubland S055 

1 1 1 2 2 4 5 3 2 3 2 2 1 

Inter-Mountain Basins Mixed Salt 
Desert Scrub S065 

1 1 1 1 2 3 3 5 1 2 2 4 1 

Inter-Mountain Basins Montane 
Sagebrush Steppe S071 

2 2 2 2 2 3 2 1 5 4 2 1 2 

Inter-Mountain Basins Big Sagebrush 
Steppe S078 

1 1 1 2 2 3 3 2 4 5 3 2 2 

Inter-Mountain Basins Semi-Desert 
Grassland S090 

2 1 1 2 1 2 2 2 2 3 5 2 1 

Inter-Mountain Basins Greasewood 
Flat S096 

1 1 1 1 1 2 2 4 1 2 2 5 3 

Great Basin Foothill and Lower 
Montane Riparian Woodland and 

Shrubland S118 
1 2 2 2 1 2 1 1 2 2 1 3 5 

 

The key step in our methodology is a cell-by-cell evaluation of the deterministic error 

matrix in relation to corresponding cells in the relative similarity score matrix, which results 

in a computed “fuzzy set” matrix.  During computation, misclassification errors in the off-

diagonal cells of Table 5 are adjusted according their respective relative similarity score in 

Table 4.  For example, in the “very similar” fuzzy set computation, cells with 

misclassification errors in the deterministic error matrix corresponding to a RSS of 4 (very 
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similar) are adjusted by adding the misclassification value (i.e. number of misclassified sites) 

to the diagonal cell in the computed fuzzy set matrix.  

 

Table 5. Original error matrix. 
                  

 R E F E R E N C E 
LAND COVER CLASS Code 

S
00

9 

S
02

3 

S
02

8 

S
04

0 

S
05

0 

S
05

4 

S
05

5 

S
06

5 

S
07

1 

S
07

8 

S
09

0 

S
09

6 

S
11

8 

To
ta

l 

U
se

r (
%

) 

Inter-Mountain 
Basins Cliff and 

Canyon S009 
5           1             6 83% 

Rocky Mountain 
Aspen Forest and 

Woodland S023 
  4                       4 100% 

Rocky Mountain 
Subalpine Dry-

Mesic Spruce-Fir 
Forest and 
Woodland S028 

    5                     5 100% 

Great Basin 
Pinyon-Juniper 

Woodland S040 
      17             1     18 94% 

Inter-Mountain 
Basins Mountain 

Mahogany 
Woodland and 

Shrubland S050 

        1                 1 100% 

Inter-Mountain 
Basins Big 
Sagebrush 
Shrubland S054 

      1   54 12 2 2 6 3 1   81 67% 

Great Basin Xeric 
Mixed Sagebrush 

Shrubland S055 
          2 8 1 2 1       14 57% 

Inter-Mountain 
Basins Mixed Salt 

Desert Scrub S065 
            1 2           3 67% 

Inter-Mountain 
Basins Montane 

Sagebrush Steppe S071 
1 2     1 1 3   18 2 1 1   30 60% 

Inter-Mountain 
Basins Big 

Sagebrush Steppe S078 
          1       0   1   2 0% 

Inter-Mountain 
Basins Semi-

Desert Grassland S090 
          1         3     4 75% 

Inter-Mountain 
Basins 

Greasewood Flat S096 
              1       1   2 50% 

M
 A

 P
 P

 E
 D

 

Great Basin Foothill 
and Lower 

Montane Riparian 
Woodland and 

Shrubland S118 

                        6 6 100% 

    Total 6 6 5 18 2 59 25 6 22 9 8 4 6 176   

Producers (%) 83% 67% 100% 94% 50% 92% 32% 33% 82% 0% 38% 25% 100%   70% 

                              KHAT= 0.63 

 

Fuzzy set matrices may be computed in one of two ways.  Classification errors can 

be moved vertically to the diagonal “adjusting” errors of omission, or classification errors 

can be moved horizontally to the diagonal “adjusting” errors of commission (Table 6).  New 

producer and user accuracies are computed for each land cover class reflecting a revised 
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assessment of errors given recognized ecological similarities between land cover classes and 

the new definition of what constitutes “misclassification.”  

Separate fuzzy set matrices are produced for each of three relative similarity 

categories:  very similar (4), moderately similar (3), and somewhat similar (2).  Fuzzy set error 

matrices for levels 1 and 5 are not produced because they either provide the same 

information as the deterministic error matrix (level 5), or make all classes 100% accurate 

(level 1) which is not appropriate. The computation of each fuzzy matrix is facilitated using a 

script that compares the deterministic error matrix to the relative similarity score matrix. 

 

Table 6. Revised "fuzzy set" matrix computed from the original error matrix (Table 5) and the Relative 
Similarity Score matrix (Table 4) using an RSS threshold of  ≥ 4.   User and producer rates, and KHAT are 
recalculated. Values that have changed are in bold italics.  
                  

R E F E R E N C E 

LAND COVER CLASS Map 
Code 

S
00

9 

S
02

3 

S
02

8 

S
04

0 

S
05

0 

S
05

4 

S
05

5 

S
06

5 

S
07

1 

S
07

8 

S
09

0 

S
09

6 

S
11

8 

To
ta

l 

U
se

r (
%

) 

Inter-Mountain Basins 
Cliff and Canyon S009 

5           1             6 83% 

Rocky Mountain Aspen 
Forest and Woodland S023 

  4                       4 100% 

Rocky Mountain 
Subalpine Dry-Mesic 

Spruce-Fir Forest and 
Woodland S028 

    5                     5 100% 

Great Basin Pinyon-
Juniper Woodland S040 

      17             1     18 94% 

Inter-Mountain Basins 
Mountain Mahogany 

Woodland and 
Shrubland S050 

        1                 1 100% 

Inter-Mountain Basins 
Big Sagebrush 

Shrubland S054 
      1   56   2 2 6 3 1   71 79% 

Great Basin Xeric Mixed 
Sagebrush Shrubland S055 

            20 1 2 1       # 83% 

Inter-Mountain Basins 
Mixed Salt Desert Scrub S065 

            1 3           4 75% 

Inter-Mountain Basins 
Montane Sagebrush 

Steppe S071 
1 2     1 1 3   18   1 1   28 64% 

Inter-Mountain Basins 
Big Sagebrush Steppe S078 

          1       2   1   4 50% 

Inter-Mountain Basins 
Semi-Desert Grassland S090 

          1         3     4 75% 

Inter-Mountain Basins 
Greasewood Flat S096 

                      1   1 100% 

M
 A

 P
 P

 E
 D

 

Great Basin Foothill and 
Lower Montane Riparian 

Woodland and 
Shrubland S118 

                        6 6 100% 

  Total 6 6 5 18 2 59 25 6 22 9 8 4 6 176   

Producers (%) 83% 67% 100% 94% 50% ## ## ## 82% ## 38% 25% 100%   80% 

                              KHAT = 0.75 
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3.3 Information Gained from Fuzzy Set Matrices 

A chief advantage of the fuzzy set approach for accuracy assessment is that it 

provides the opportunity to extract additional information beyond that provided by the 

deterministic error matrix.   Gopal and Woodcock (1994) suggest methods for exploring and 

presenting information on the frequency, magnitude, source and nature of errors through 

fuzzy set “operators.”  These include the MAX and RIGHT operators, which provide 

information on the frequency and distribution of errors, and taken together provide a measure 

of “improvement” in accuracies based on fuzzy set theory.  The DIFFERENCE operator 

also assesses improvement by identifying the magnitude or severity of errors for individual 

land cover classes.  Exploring possible sources of error is accomplished through the 

MEMBERSHIP operator.  Each of these modes of investigation is possible using the 

holistic matrix evaluation approach presented in this paper.  Exploring the nature of errors 

using Gopal and Woodcock’s CONFUSION and AMBIGUITY operators requires 

individual reference site-based evaluations, and is therefore not possible with our approach. 

The remainder of this section describes how the frequency, distribution, magnitude and 

source of errors can be explored and presented using the fuzzy set matrices generated with 

our method. 

3.3.1 Frequency and Distribution of Errors 

The frequency and distribution of errors refers to the number of misclassifications 

distributed among all land cover classes.  The deterministic error matrix provides this 

information through user and producer accuracies.  What is of interest when performing a 

fuzzy set analysis of errors is how these accuracies change within the fuzzy set paradigm.  In 

other words, recognizing that some errors may be considered “acceptable” because of 

recognized similarities among classes, how do the distribution and frequency of errors 

change?  

Within the Gopal-Woodcock framework, the frequency and distribution of errors are 

presented using the MAX and RIGHT operators. The MAX operator is typically a more 

conservative metric of error and refers to the accuracies revealed by the deterministic error 

matrix. The more liberal RIGHT operator is defined by a specified threshold of acceptable 

fuzziness between classes.  Using our terminology, this is a threshold of acceptable ecological 

similarity between classes.  Numerically the threshold is defined by the relative similarity 

score, and any degree of similarity to the right of that score.  For example, if the threshold 
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for the RIGHT operator is specified as “moderately similar,” classes with a relative similarity 

score ≥ 3 are considered matches rather than mismatches.  

The holistic fuzzy set matrix approach we described in the previous section provides 

information based on the RIGHT operator.  Each computed fuzzy set matrix is essentially a 

revised error matrix based on increasingly more liberal RIGHT thresholds (i.e. ≥ 4, ≥ 3 and 

≥ 2) of relative ecological similarity. Each of these matrices have value in and of themselves, 

however as Gopal and Woodcock (1994) suggest, information from the MAX and RIGHT 

operator presented together is more useful, as it provides a metric of improvement in the 

map’s accuracy given acceptable similarities between land cover classes.  

Table 7 presents information on the MAX and RIGHT operators, using a RIGHT 

operator threshold of ≥ 4.  Using this threshold, mismatches identified by the ecological 

criteria as “very similar” are adjusted to be matches in the RIGHT operator.  Individual class 

accuracies provided by the MAX operator represent only those cells with a relative similarity 

score of 5 (i.e. absolutely correct). We note that, given recognized ecological similarities at 

the ≥ 4 threshold level, improvements occur in 4 of the 13 classes. Mean improvement for 

the map was 10%, increasing from 70% to 80%. The most significant improvement occurred 

in the Great Basin Xeric Mixed Sagebrush Shrubland (S055) class, which increased from 

32% to 80%. This can be interpreted to mean that if we are willing to accept the inclusion of 

land cover classes that are ecologically very similar to Great Basin Xeric Mixed Sagebrush 

Shrubland, the map has very good accuracy for this class. 

Table 7: Results of MAX and RIGHT operators, identifying the frequency and distribution of errors, and 
"improvement" using a RSS threshold ≥ 4 (i.e. very similar). 
                            

 MAX (M) - best answer   RIGHT (R) - acceptable   
       LAND COVER CLASS MapCode 

Total 
# 

Sites 

% of 
sites 

 

Matches     
(RSS = 5)  Mismatches   

(RSS ≠ 5)  Matches      
(RSS ≥ 4)   Mismatches   

(RSS < 4)  

Improve-
ment      

(R - M) 

Inter-Mountain Basins 
Cliff and Canyon S009 6 3%   5 (83%)   1 (17%)   5 (83%)   1 (17%)   0 (0%) 

Rocky Mountain Aspen 
Forest and Woodland S023 6 3%  4 (67%)  2 (33%)   4 (67%)   2 (33%)  0 (0%) 

Rocky Mountain 
Subalpine Dry-Mesic 

Spruce-Fir Forest and 
Woodland 

S028 5 3%  5 (100%)  0 (0%)   5 (100%)   0 (0%)  0 (0%) 

Great Basin Pinyon-
Juniper Woodland S040 18 10%  17 (94%)  1 (6%)   17 (94%)   1 (6%)  0 (0%) 

Inter-Mountain Basins 
Mountain Mahogany 

Woodland and Shrubland 
S050 2 1%  1 (50%)  1 (50%)   1 (50%)   1 (50%)  0 (0%) 

Inter-Mountain Basins Big 
Sagebrush Shrubland S054 59 34%  54 (92%)  5 (8%)   56 (95%)   3 (5%)  2 (3%) 

Great Basin Xeric Mixed 
Sagebrush Shrubland S055 25 14%  8 (32%)  17 (68%)   20 (80%)   5 (20%)  12 (48%) 
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Inter-Mountain Basins 
Mixed Salt Desert Scrub S065 6 3%  2 (33%)  4 (67%)   3 (50%)   3 (50%)  1 (17%) 

Inter-Mountain Basins 
Montane Sagebrush Steppe S071 22 13%  18 (82%)  4 (18%)   18 (82%)   4 (18%)  0 (0%) 

Inter-Mountain Basins Big 
Sagebrush Steppe S078 9 5%  0 (0%)  9 (100%)   2 (22%)   7 (78%)  2 (22%) 

Inter-Mountain Basins 
Semi-Desert Grassland S090 8 5%  3 (38%)  5 (62%)   3 (38%)   5(62%)  0 (0%) 

Inter-Mountain Basins 
Greasewood Flat S096 4 2%  1 (25%)  3 (75%)   1 (25%)   3 (75%)  0 (0%) 

Great Basin Foothill and 
Lower Montane Riparian 

Woodland and Shrubland 
S118 6 3%  6 (100%)  0 (0%)   6 (100%)   0 (0%)  0 (0%) 

TOTAL   176 100%   124 (70%)   53 (30%)   135 (80%)   35 (20%)   17 (10%) 

 

3.3.2 Magnitude of Errors 

Assessing the magnitude of errors reveals the severity of confusion among 

mismatches in the deterministic error matrix.  This is particularly relevant with our ecological 

framework approach, as the severity of errors becomes explicitly tied to potential ecological 

consequences of misclassification.  Here again, we borrow from Gopal and Woodcock 

(1994) the idea of a DIFFERENCE operator.  Operationally this involves evaluating 

mismatches (i.e. off-diagonal cells) from the deterministic error matrix (Table 5) in relation 

to their corresponding relative similarity scores (RSS) in the relative similarity score matrix 

(Table 4).  To reveal the magnitude of mismatches for each confused cell, we subtract the 

RSS for that cell from the highest possible similarity score (i.e. 5 or “absolutely correct”).  

The result is a range of difference scores between 0 and -4, where 0 indicates a perfect match 

(5 – 5 = 0), or no error, and -4 indicates a high-magnitude error (1 – 5 = -4).   

This information can be summarized and presented as in Table 8.   Here the number 

of mismatches from the deterministic error matrix and their corresponding difference errors 

are presented under the DIFFERENCE heading.  The weighted mean of DIFFERENCE errors 

for each class is calculated by multiplying the frequency of errors of each mismatch category 

by its score, summing the products, and dividing the sum by the total number of sites for the 

land cover class.  Formally this is expressed: 

j

c

i

m

j
s

mn
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∑
=
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Where Dj is the weighted mean difference for land cover class j, n is the number of 

classification errors for mismatch score m (or weight), s is the total number of sites for class j 

and c is the total number of mismatch categories for class j.  The index is very similar to the 

arithmetic mean suggested by Gopal and Woodcock (1994) and has the effect of scaling the 
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magnitude of errors within each land cover class relative to all other land cover classes.  

Weighted mean DIFFERENCE values approaching 0 represent low-magnitude errors, 

whereas increasingly negative values indicated high-magnitude errors.  

 

Table 8. Results of the DIFFERENCE operator, indentifying the magnitude of error for each land 
cover class. 
                    

   DIFFERENCE  

Mismatches  Matches 
      LAND COVER CLASS Map 

Code 

Total 
# 

sites -4 -3 -2 -1   0 

Arithmetic 
Mean of 

DIFFERENCE 

Inter-Mountain Basins Cliff and Canyon S009 6  1    5 -0.50 

Rocky Mountain Aspen Forest and 
Woodland S023 6  2    4 -1.00 

Rocky Mountain Subalpine Dry-Mesic 
Spruce-Fir Forest and Woodland S028 5      5 0.00 

Great Basin Pinyon-Juniper Woodland S040 18  1    17 -0.17 

Inter-Mountain Basins Mountain 
Mahogany Woodland and Shrubland S050 2  1    1 -1.50 

Inter-Mountain Basins Big Sagebrush 
Shrubland S054 59  1 2 2  54 -0.15 

Great Basin Xeric Mixed Sagebrush 
Shrubland S055 25 1 3 1 12  8 -1.08 

Inter-Mountain Basins Mixed Salt Desert 
Scrub S065 6   3 1  2 -1.17 

Inter-Mountain Basins Montane 
Sagebrush Steppe S071 22  2 2   18 -0.45 

Inter-Mountain Basins Big Sagebrush 
Steppe S078 9   7 2  0 -1.78 

Inter-Mountain Basins Semi-Desert 
Grassland S090 8  5    3 -1.88 

Inter-Mountain Basins Greasewood Flat S096 4 1 2    1 -2.50 

Great Basin Foothill and Lower Montane 
Riparian Woodland and Shrubland S118 6      6 0.00 

TOTAL   176 2 18 15 17   124   
Percent of TOTAL   100% 1% 10% 9% 10%   70%   

          

 

 In this example, the Inter-Mountain Basins Big Sagebrush Shrubland (S054) class 

has low-magnitude errors, with a mean DIFFERENCE value of -0.15.  This reflects two 

errors that are considered “very similar” (mismatch of -1), two errors considered 

“moderately similar” (mismatch of -2) and 1 error considered “somewhat similar” (mismatch 

of -3).  In contrast, the Inter-Mountain Basins Greasewood Flat class exhibits high-

magnitude errors with a mean difference value of -2.50. This reflects two errors that are 

“somewhat similar” (mismatch of -3) and one error that is “absolutely incorrect” (mismatch 
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of -4).  In summary, this operator provides a metric of land cover classification performance 

by measuring the severity of errors for individual land cover classes, based on the criteria 

provided by the ecological similarity framework.  It does not however, indicate which classes 

are confused with any given land cover class, or in other words, the source of errors. 

3.3.3 Source of Errors 

An important advantage of fuzzy set analysis is the ability to recognize multiple set 

memberships and grades of set membership.  The deterministic error matrix indicates the 

land cover class with which a particular land cover class may be confused (i.e. by interpreting 

the off-diagonal cells).  However, it does not directly provide a metric identifying the 

frequency, or degree to which an individual class is confused with other land cover classes.  

The idea behind Gopal and Woodcock’s MEMBERSHIP operator is that classification error 

may be considered “correct” given the acceptance of multiple set memberships (i.e. 

reference sites may not fit unambiguously into land cover classes).  Gopal and Woodcock’s 

method identifies the frequency of multiple set memberships for each reference site at a 

given fuzziness threshold (i.e. RIGHT operator threshold).  Our approach adopts this 

concept, but applies it to an assessment of the misclassification errors presented by the off-

diagonal cells within the deterministic error matrix.  Thresholds of fuzziness are defined by 

recognized levels of relative ecological similarity, enumerated by the RSS (Table 4). 

To assess the frequency of multiple set memberships relative to the producers 

accuracy at given thresholds of recognized ecological similarity, we return to an evaluation of 

the deterministic error matrix (Table 5) in relation to the RSS matrix (Table 4).  The 

evaluation is facilitated by constructing a new matrix (Table 9a) that combines information 

from Tables 4 and 5.  Here, the first numeral represents the number of reference sites in the 

cell (from Table 5) and the second numeral (in bold) indicates the relative similarity score for 

that cell (from Table 4).  Table 9b summarizes information in the combined matrix 

providing the frequency of multiple set memberships, followed by the frequency represented 

as a proportion.  The frequency of multiple set memberships for each RSS threshold 

provides information about the relative heterogeneity of the mapped land cover classes, 

based on gradations of recognized ecological similarity (i.e. RSS thresholds).    

The weighted mean RSS for errors is the mean relative similarity score for all sites from 

the off-diagonal cells and provides a single metric for set membership errors.  It is calculated 

by multiplying the frequency of each RSS score of all sites from the off-diagonal cells, 
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summing across all possible RSS scores and dividing by the total number of sites found off 

the diagonal (i.e. total number of errors).  Formally it is expressed: 
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Where Rj is the weighted mean RSS of errors for land cover class j, f is the frequency of 

errors for membership category r, e is the total number of errors for class j, and n is the total 

number errors for class j.  The weighted mean RSS value therefore, is metric of set 

membership based on the observed errors (Table 5) and recognized similarities (Table 4).  A 

mean value of 0 represents no overlap with any other class and a value of 4.00 shows 

significant ecological overlap with one or more land cover classes. 

The intent of set membership analysis is to identify possible sources of error by 

revealing overlap among land cover classes. This is useful when interpreting the quality of 

the map product, but may have greater utility during early phases of the mapping process to 

determine whether land cover class definitions need refinement.  For example, from Table 

9a we see that classes S054 and S055 are highly confused with each other.  From a 

producer’s perspective (i.e. errors of omission, or errors along the vertical axis) we note that 

S054 is confused with four other classes:  S055, S071, S078 and S090 (for class names, see 

Table 9a). The two-dimensional matrix format provides a visual impression of where overlap 

between classes exists.  Including the relative similarity score (in bold) for each cell provides 

additional information on the ecological similarity of the errors for each mapped class.  For 

example, of the five validation sites omitted from the correct classification of S054, two of 

them were mapped as S055, which is considered ecologically very similar to S054.  

Further examination of the matrix reveals that class S055 is also confused with four 

other classes, and S054 is one of the four (from producer’s perspective). Before we draw 

conclusions about confusion between these classes being attributable to ecological overlap, it 

is helpful to analyze the proportion of error for each class (from Table 9b). We note that for 

S054, two out of 59 samples, or 3% of the errors are confused with S055. On the other hand 

for S055, 12 out of 25 samples or 48% of the errors are confused with S054.  If confusion 

between these two classes were attributable to ecological similarity we would expect the 

proportion of overlapping errors to be roughly the same.  What we see is that S055 is being 

mapped almost half of the time as S054, but not the inverse.  Therefore the explanation may 
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not be the similarity between the two classes, but a problem with the mapping algorithm.  In 

this case, the decision tree classifier may have been heavily influenced by the 

disproportionate number of training samples available for the S054 class.  

Table 9a. Results of MEMBERSHIP operator presented as a combined matrix (1st numeral from 
deterministic matrix, 2nd numeral (bold) from RSS matrix).   
                  

 R E F E R E N C E 

LAND COVER CLASS Code 

S
00

9 

S
02

3 

S
02

8 

S
04

0 

S
05

0 

S
05

4 

S
05

5 

S
06

5 

S
07

1 

S
07

8 

S
09

0 

S
09

6 

S
11

8 

To
ta

l 

U
se

r (
%

) 

Inter-Mountain 
Basins Cliff and 

Canyon S009 
5:5           1:1             6 83% 

Rocky Mountain 
Aspen Forest and 

Woodland S023 
  4:5                       4 100% 

Rocky Mountain 
Subalpine Dry-

Mesic Spruce-Fir 
Forest and 
Woodland S028 

    5:5                     5 100% 

Great Basin 
Pinyon-Juniper 

Woodland S040 
      17:5             1:2     18 94% 

Inter-Mountain 
Basins Mountain 

Mahogany 
Woodland and 

Shrubland S050 

        1:5                 1 100% 

Inter-Mountain 
Basins Big 
Sagebrush 
Shrubland S054 

      1:2   54:5 12:4 2:3 2:3 6:3 3:2 1:2   81 67% 

Great Basin Xeric 
Mixed Sagebrush 

Shrubland S055 
          2:4 8:5 1:3 2:2 1:3       14 57% 

Inter-Mountain 
Basins Mixed Salt 

Desert Scrub S065 
            1:3 2:5           3 67% 

Inter-Mountain 
Basins Montane 

Sagebrush Steppe S071 
1:2 2:2     1:2 1:2 3:2   18:5 2:4 1:2 1:1   30 60% 

Inter-Mountain 
Basins Big 

Sagebrush Steppe S078 
          1:3       0:5   1:2   2 0% 

Inter-Mountain 
Basins Semi-

Desert Grassland S090 
          1:2         3:5     4 75% 

Inter-Mountain 
Basins 

Greasewood Flat S096 
              1:4       1:5   2 50% 

M
 A

 P
 P

 E
 D

 

Great Basin Foothill 
and Lower 

Montane Riparian 
Woodland and 

Shrubland S118 

                        6:5 6 100% 

  Total 6 6 5 18 2 59 25 6 22 9 8 4 6 176   

Producers (%) 83% 67% 100% 94% 50% 92% 32% 33% 82% 0% 38% 25% 100%   70% 

Table 9b. Summary of combined matrix (Table 9a) from a producer's perspective. 
                                    

SET MEMBERSHIP as  
Frequency   S

00
9 

S
02

3 

S
02

8 

S
04

0 

S
05

0 

S
05

4 

S
05

5 

S
06

5 

S
07

1 

S
07

8 

S
09

0 

S
09

6 

S
11

8 

    
No membership (RSS = 1)        1     1    
Mulitiple set membership 
(RSS ≥ 2)  1 2  1 1 2 3  2  5 2    

Multiple set membership 
(RSS ≥ 3)       1 1 3 2 6      

Multiple set membership 
(RSS ≥ 4)       2 12 1  2      

Single set membership 
(RSS = 5)   5 4 5 17 1 54 8 2 18   3 1 6     
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    Total Sites 6 6 5 18 2 59 25 6 22 8 8 4 6     

    Total Errors  1 2 0 1 1 5 17 4 4 8 5 3 0     

   Weighted Mean 
RSS for Errors  2.00 2.00 0.00 2.00 2.00 3.00 3.41 3.25 2.50 3.25 2.00 1.67 0.00     

SET MEMBERSHIPas a  
Proportion                                 

No membership (RSS = 1)        0.04     0.25    
Multiple set membership 
(RSS ≥ 2)  0.17 0.33  0.06 0.50 0.03 0.12  0.09  0.63 0.50    

Multiple set membership 
(RSS ≥ 3)       0.02 0.04 0.50 0.09 0.75      

Multiple set membership 
(RSS ≥ 4)       0.03 0.48 0.17  0.25      

Single set membership 
(RSS = 5)   0.83 0.67 1.00 0.94 0.50 0.92 0.32 0.33 0.82 0.00 0.38 0.25 1.00     

 

In summary, combining the deterministic error matrix with the relative similarity 

score matrix presents additional information that can be used to better interpret the map 

product, as well as guide the mapping process.  The overall goal is to identify potential 

sources of mapping confusion.  In addition to more detailed analysis, the weighted mean 

RSS for errors provides a single metric of possible ecological overlap for each land cover 

class.   

 

4.0 Discussion  

Our methodology provides an innovative approach to fuzzy set map accuracy 

assessment that builds on the framework originally outlined by Gopal and Woodcock (1994). 

While we borrow concepts from Gopal and Woodcock (1994) and adhere to their 

underlying objectives for fuzzy set analysis, our approach differs in two fundamental ways.  

First, a central goal to our methodology was the creation of a standardized framework for 

fuzzy set evaluation that could be replicated by multiple map assessment experts.  While the 

ecological framework approach does not completely eliminate subjectivity in the fuzzy set 

evaluation process (some subjectivity remains in the interpretation of the Ecological System 

descriptions) it provides a standardized structure within which decision rules can be 

constructed.  

Second, our approach focuses on a holistic evaluation of the error matrix, rather than 

an evaluation of individual reference sites.  Operationally, applying the decision rules based 

on ecological criteria results in the creation of the relative similarity score (RSS) matrix.   

From the relative similarity score matrix we have shown that it is possible to derive and 

present information on the frequency, distribution, magnitude, and source of errors.  A 

drawback to this approach is that we cannot detect variability among reference sites.  In 

other words, we must assume that all reference sites are labeled correctly.  However, if an 
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important goal of fuzzy set assessments is to account for variation among land cover classes, 

our approach achieves results similar to those using more traditional fuzzy set assessment 

methods.  A key advantage to the holistic matrix approach is that it can be performed 

quickly, either during or after the mapping process.   

Through the course of our investigation we discovered new questions regarding the 

use of fuzzy sets in map accuracy assessment.  These apply equally to our matrix-based 

evaluation and to more traditional reference site-based approaches.  The first question deals 

with how unequal distributions of reference samples affect the outcome of fuzzy set 

operators.  The hypothetical dataset presented by Gopal and Woodcock (1994) used an 

equal number of samples per class.  In our dataset, the distribution of validation samples is 

not evenly distributed.  Future research should investigate how fuzzy set operators are 

affected under conditions of unequal distribution of samples among classes.  

A second question focuses on possible differences in outcome depending on 

whether the fuzzy set assessment is applied from a user’s or producer’s perspective. 

Conforming to previous fuzzy set assessment methods, we present our results in this paper 

using a producer’s perspective (Gopal and Woodcock, 1994; Laba et al., 2002; Green and 

Congalton, 2005).  However, our matrix-based approach opens the possibility of assessing 

multiple set memberships from a user’s perspective as well.  Future research investigating the 

differences, and possible utilities of fuzzy set assessment from both the user’s and producer’s 

perspective might prove interesting and worthwhile.  

5.0 Conclusion 

Classification error can be attributed to a number of sources, including poor 

discriminating power of the classification algorithm, inadequate training samples, mis-

registration of training samples to imagery, and ambiguity among land cover classes.  The 

focus of this research has been to address classification error due to ambiguity among land 

cover classes using fuzzy set theory. 

Increasingly, remote sensing-based mapping approaches are mapping more complex 

landscape features with greater thematic detail.  Green and Congalton (2005) point out that 

more complex classification schemes require more effective methods of assessing map 

quality than the traditional deterministic error matrix.  The deterministic error matrix 

provides a good starting point for error interpretation because it provides useful information 

and is relatively easy to interpret.  However, more complex classification schemes typically 
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do not have clearly defined differences between land cover mapping categories.   Instead, 

classification schemes such as NatureServe’s Ecological System classification scheme 

represent gradations of ecological homogeneity across the landscape.   Taking into 

consideration ecological gradations in the landscape may more accurately portray reality, but 

also complicates making a quantitative assessment of map quality.  Thus, as long there is 

demand for maps with complex classification schemes, there will be a need for better 

methods to assess their agreement with what is on the ground.  Fuzzy set methods, such as 

the approach described in this paper, address this need. 
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